Advances in Novel Lubricant Additives (2024)

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess.

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Journals
      • Active Journals
      • Find a Journal
      • Journal Proposal
      • Proceedings Series
  • Topics
  • Information
      • For Authors
      • For Reviewers
      • For Editors
      • For Librarians
      • For Publishers
      • For Societies
      • For Conference Organizers
      • Open Access Policy
      • Institutional Open Access Program
      • Special Issues Guidelines
      • Editorial Process
      • Research and Publication Ethics
      • Article Processing Charges
      • Awards
      • Testimonials
  • Author Services
  • Initiatives
  • About
      • Overview
      • Contact
      • Careers
      • News
      • Press
      • Blog

Sign In / Sign Up Submit

3.1

Journals

Lubricants

Special Issues

Advances in Novel Lubricant Additives

Submit to Lubricants Review for Lubricants Propose a Special Issue

Journal Menu

► Journal Menu

    • Lubricants Home
    • Editorial Board
    • Topical Advisory Panel
    • Instructions for Authors
    • Special Issues
    • Topics
    • Topical Collections
    • Article Processing Charge
    • Journal Statistics
    • Journal History
    • Journal Awards
    • Conferences
    • Editorial Office

Journal Browser

► Journal Browser

  • arrow_forward_ios Forthcoming issue
    arrow_forward_ios Current issue
  • Vol.12(2024)
  • Vol.11(2023)
  • Vol.10(2022)
  • Vol.9(2021)
  • Vol.8(2020)
  • Vol.7(2019)
  • Vol.6(2018)
  • Vol.5(2017)
  • Vol.4(2016)
  • Vol.3(2015)
  • Vol.2(2014)
  • Vol.1(2013)

announcement

Need Help?

Support

Find support for a specific problem in the support section of our website.

Get Support

Feedback

Please let us know what you think of our products and services.

Give Feedback

Information

Visit our dedicated information section to learn more about MDPI.

Get Information

clear

  • Special Issue Editors
  • Special Issue Information
  • Keywords
  • Benefits of Publishing in a Special Issue
  • Published Papers

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 14405

Share This Special Issue

Special Issue Editors

Advances in Novel Lubricant Additives (6) Dr. Xin He


E-Mail Website
Guest Editor

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Interests: surface science; environmentally friendly lubricant; tribochemistry; ionic liquid; high-temperature tribology
Special Issues, Collections and Topics in MDPI journals

Advances in Novel Lubricant Additives (8) Dr. Chanaka Kumara


E-Mail Website
Guest Editor

Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6063, USA
Interests: design, synthesis, and surface modification of nanomaterials as lubricant additives and protective coating; tribochemistry and tribofilm nanostructures
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Novel lubricants can provide effective energy efficiency, extended durability, and environmental compatibility for mechanical systems. Over 20% of energy consumption all over the world originates from tribology, while 3% of it is used to maintain and repair systems because of wear and related issues. Petroleum-based lubricants have been investigated for centuries and applied in almost all industries.

Typically, industrial lubricant contains a blend of base oils (70~90%) and several categories of additives, including anti-wear additives, friction modifiers, antioxidants, detergents, dispersants, and viscosity modifiers. With multifunctional additives, the formulated lubricants can not only lubricate the interfaces, but also solve problems including cleaning, cooling, and sealing. The design of additives and lubricant formulation has mostly remained an art.

This Special Issue aims to present the most recent discoveries in advanced additives in the lubrication industry and research. Topics dealing with friction improvement (friction modifiers, additives, and formulations), novel anti-wear additives (nanoparticles, ionic liquids, and bio-based additives), and eco-friendly additives are welcome. Outstanding studies in other research areas supporting the design and development of advanced additives will also be encouraged. The contributions will have a significant impact on both academic and industrial fields.

Dr. Xin He
Dr. Chanaka Kumara
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs).Submitted papers should be well formatted and use good English. Authors may use MDPI'sEnglish editing service prior to publication or during author revisions.

Keywords

  • lubricants
  • additives
  • tribochemistry
  • friction
  • wear
  • tribology
  • environmentally friendly fluids
  • modeling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Download All Papers

16 pages, 5093 KiB

Article

Activated Carbon Nano-Particles from Recycled Polymers Waste as a Novel Nano-Additive to Grease Lubrication

by Mohamed G. A. Nassef, Hassan Shokry Hassan, Galal A. Nassef, Belal Galal Nassef, Mina Soliman and Marwa F. Elkady

Lubricants 2022, 10(9), 214; https://doi.org/10.3390/lubricants10090214 - 6 Sep 2022

Cited by 8 |Viewed by 3468

Abstract

A worldwide growing trend is dedicated towards reducing carbon dioxide emissions from mechanical systems in different industries. One key factor under focus of research is to decrease energy losses in rotating machinery during operation by improving lubrication performance. This paper presents a novel [...] Read more.

A worldwide growing trend is dedicated towards reducing carbon dioxide emissions from mechanical systems in different industries. One key factor under focus of research is to decrease energy losses in rotating machinery during operation by improving lubrication performance. This paper presents a novel grease nano-additive using activated carbon (AC) as a byproduct from recycled polymer waste. Five different concentrations of AC nanoparticles (ACNPs) are added to lithium grease to obtain blends containing 0.025 wt.%, 0.05 wt.%, 0.1 wt.%, 0.5 wt.%, and 1 wt.%. The tribological assessment of blends has been performed using a four-ball wear test and load carrying capacity test. The obtained results for blends are compared to samples of base grease and to blends with 2 wt.% reduced graphene oxide (rGO). Test results showed a remarkable enhancement of load carrying capacity of AC samples by 20–30% as compared to base grease. By observing wear scar in rolling elements, the ACNPs lowered the average wear scar diameter (WSD) for all samples by 30–36%. Base grease samples showed the highest coefficient of friction (COF) values between 0.15 and 0.17. These values are reduced to 0.03 and 0.06 for grease with ACNPs reaching their minimum in the case of 1 wt.% AC. These outcomes are found consistent with the enhancements in driving power saving values. The results proved the competitiveness and suitability of the AC as a recycled waste and nano-additive for improving the tribological performance of grease lubrication. Full article

(This article belongs to the Special Issue Advances in Novel Lubricant Additives)

► Show Figures

Advances in Novel Lubricant Additives (26)

Graphical abstract

---

Advances in Novel Lubricant Additives (27)

Figure 2

---

Advances in Novel Lubricant Additives (28)

Figure 3

---

Advances in Novel Lubricant Additives (29)

Figure 4

---

Advances in Novel Lubricant Additives (30)

Figure 5

---

Advances in Novel Lubricant Additives (31)

Figure 6

---

Advances in Novel Lubricant Additives (32)

Figure 7

---

Advances in Novel Lubricant Additives (33)

Figure 8

---

Advances in Novel Lubricant Additives (34)

Figure 9

---

Advances in Novel Lubricant Additives (35)

Figure 10

---

Advances in Novel Lubricant Additives (36)

Figure 11

---

Advances in Novel Lubricant Additives (37)

Figure 12

---

Advances in Novel Lubricant Additives (38)

Figure 13

14 pages, 4420 KiB

Article

Synergistic Lubricating Performance of Graphene Oxide and Modified Biodiesel Soot as Water Additives

by Chuan Li, Bo Wu, Xiaoju Chen, Lei Li, Xinyun Wang, Xiaobao Gao, Xiaodong Wang, Kunhong Hu and Xianguo Hu

Lubricants 2022, 10(8), 175; https://doi.org/10.3390/lubricants10080175 - 5 Aug 2022

Cited by 5 |Viewed by 2147

Abstract

The tribological performance of graphene oxide (GO) nanosheets, modified biodiesel soot (MBS) nanoparticles, and their mixture (MBS–GO) nanoparticles as lubricant additives in water was evaluated using a reciprocating ball-on-plate tribometer. The effects of different mass ratios of GO to MBS, additive concentrations, and [...] Read more.

The tribological performance of graphene oxide (GO) nanosheets, modified biodiesel soot (MBS) nanoparticles, and their mixture (MBS–GO) nanoparticles as lubricant additives in water was evaluated using a reciprocating ball-on-plate tribometer. The effects of different mass ratios of GO to MBS, additive concentrations, and loads, as well as corresponding lubrication mechanisms, were studied. The tribological measurements showed that the water-containing 0.5 wt% additives at a mass ratio of 60:40 (GO to MBS) resulted in larger reductions in friction coefficient (69.7%) and wear volume (60.5%) than water. Owing to the synergistic effect of GO nanosheets and MBS nanoparticles, the MBS–GO aqueous sample showed superior lubricating properties compared to water as well as GO and MBS aqueous samples. The good tribological properties of MBS–GO nanoparticles in water are attributed to the formation of a tribofilm of hybrid nanoparticles that effectively protects the friction interface. Moreover, the MBS nanoparticles can provide lubrication by acting as ball bearings. Full article

(This article belongs to the Special Issue Advances in Novel Lubricant Additives)

► Show Figures

Advances in Novel Lubricant Additives (39)

Figure 1

---

Advances in Novel Lubricant Additives (40)

Figure 3

---

Advances in Novel Lubricant Additives (41)

Figure 4

---

Advances in Novel Lubricant Additives (42)

Figure 5

---

Advances in Novel Lubricant Additives (43)

Figure 6

---

Advances in Novel Lubricant Additives (44)

Figure 7

---

Advances in Novel Lubricant Additives (45)

Figure 8

---

Advances in Novel Lubricant Additives (46)

Figure 9

---

Advances in Novel Lubricant Additives (47)

Figure 10

---

Advances in Novel Lubricant Additives (48)

Figure 11

9 pages, 1508 KiB

Article

Increasing Wear Resistance of Heavy-Loaded Friction Pairs by Nanoparticles in Conventional Lubricants: A Proof of Concept

by Valeriy Kosarchuk, Mykola Chausov, Andrii Pylypenko, Volodymyr Tverdomed, Pavlo Maruschak and Vasyl Vasylkiv

Lubricants 2022, 10(4), 64; https://doi.org/10.3390/lubricants10040064 - 11 Apr 2022

Cited by 8 |Viewed by 2156

Abstract

This paper provides experimental data on the effective use of a new lubricating composition, which includes industrial oil of any brand with the addition of a nanometal of the component of a friction pair, which has a lower hardness. It is shown that [...] Read more.

This paper provides experimental data on the effective use of a new lubricating composition, which includes industrial oil of any brand with the addition of a nanometal of the component of a friction pair, which has a lower hardness. It is shown that this composition significantly reduces the wear resistance of the rails and wheels of rolling stock during operation, prevents electrochemical corrosion of the friction pair wheel–rail and, most importantly, stabilizes the coefficient of friction at the optimum level after a relatively short operating time. The experiments were performed on the friction pair, “sample of the bandage material of the railway wheel—a sample of the rail material”, with a ratio of hardness of the bandage material (Rockwell hardness, HRC scale—35.3) to the hardness of the rail material of 1.1. Test results show that in the case of industrial lubricant, the BioRail brand, with the addition of a nanomaterial friction pair with lower wear hardness of the rail metal sample, after three hours in operation the wear was practically not observed. Moreover, the average value of the friction coefficient for three hours of operation was maintained at the level 0.25, which is optimal for the friction pair wheel–rail. Similar experiments using only the same lubricant brand showed much worse results. Full article

(This article belongs to the Special Issue Advances in Novel Lubricant Additives)

► Show Figures

Advances in Novel Lubricant Additives (49)

Figure 1

---

Advances in Novel Lubricant Additives (50)

Figure 3

---

Advances in Novel Lubricant Additives (51)

Figure 4

Show export options expand_more Show export options expand_less

Select all

Export citation of selected articles as:

Error

Oops... you haven't selected anything for export.

Ok

clear

Displaying articles 1-5

Advances in Novel Lubricant Additives (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Zonia Mosciski DO

Last Updated:

Views: 5555

Rating: 4 / 5 (51 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Zonia Mosciski DO

Birthday: 1996-05-16

Address: Suite 228 919 Deana Ford, Lake Meridithberg, NE 60017-4257

Phone: +2613987384138

Job: Chief Retail Officer

Hobby: Tai chi, Dowsing, Poi, Letterboxing, Watching movies, Video gaming, Singing

Introduction: My name is Zonia Mosciski DO, I am a enchanting, joyous, lovely, successful, hilarious, tender, outstanding person who loves writing and wants to share my knowledge and understanding with you.